Media Computation:
More Image Fun!
How Would You Create This?
How is it done?

- What kinds of transforms?
- What image size?
- How did they all end up in the same image?
What About This?
A quick recap

- Learning the basics:
 - Classes
 - Objects
 - Methods
 - Fields and variables
 - If statements, loops
Classes

- Allow us to define what data is stored in an object
 - Fields
- Allow us to define new behaviors for objects
 - Methods
- **Examples:** Penny, Cloud, Cliff, Picture, Turtle, Lettuce, Actor, World
Objects

- The entities in the computer’s memory while the program is executing
- Objects **hold the data** our program is working on
- Objects **provide the actions** our program can perform
- Each object is defined by a class that determines its features
Methods

- A series of individual steps we combine into one action
- Examples: act(), changeBrightness(), maxGreen()
- Can use **parameters** to provide data to a method to customize its behavior
- Example: changeBrightness(-0.05)
Allow us to introduce names for our data

Variables allow us to give names to values used inside a method:
- int x = 0;
- Pixel source = in.getPixel(x, y);

Fields allow us to give names to values held inside an object:
- private int count = 100;
If statements let us choose actions

```javascript
if (x < this.getWidth() / 3)
{
    // do something in the first third
}
else if (x < this.getWidth() * 2 / 3)
{
    // do something in the second third
}
else
{
    // Do something in the last third
}
```
For-each loops let us repeat over a collection

```java
for (Pixel p : this.getPixels())
{
    // do something with p
}
```
Numeric for loops let us repeat anything

```java
for (int x = 0; x < this.getWidth(); x++)
{
    for (int y = 0; y < this.getHeight(); y++)
    {
        // do something with (x, y)
    }
}
```
Media Computation
:
More Image Fun!
Joining Horizontally
Joining Vertically
Scaling

- `this.scale(1.20);`
- `this.scale(0.75);`

Or:

- `this.scale(32, 32);`
Chromakey (or “green screen”)

Basic chromakey recipe ...

- Two images
- Use some pixels from image 1, and some from image 2
- If image 1’s pixel is not blue, use it
- If image 1’s pixel is blue, use image 2’s pixel instead
Alpha Blending
Alpha Blending

Also called **compositing**
So a pixel color is ...

- A triple: (R, G, B)
- A red value (0-255)
- A green value (0-255)
- A blue value (0-255)
In reality: (R, G, B, A)
Also an alpha value (0-255)
Represents transparency
0 => fully transparent
255 => fully opaque
Basic alpha blending recipe ...

- Two images
- Use **all pixels** from both images
- Combine the color of image 1’s pixel with the color of image 2’s pixel
Basic alpha blending recipe ...

- Combine the colors of the two pixels using a weighted average
- Suppose image 1 is 80% transparent
- Combine 20% of image 1’s color with 80% of image 2’s color
Let C1 be the top image, and C2 be the bottom.

Let \(A1 \) == alpha of top image (C1).

\[
\frac{A1}{255} = \text{percent } C1 \text{ is solid (C1’s strength)}
\]

\[
\frac{255 - A1}{255} = \text{percent } C1 \text{ is transparent (C2’s strength)}
\]

Blended color is:

\[
C1 \times \frac{A1}{255} + C2 \times \frac{255 - A1}{255}
\]
Activities

- Dream up your own collage
- Sketch it on paper
- Create your own method and write your own version of a collage!
- Use your own images!